200 research outputs found

    Enhanced binding revisited for a spinless particle in non-relativistic QED

    Full text link
    We consider a spinless particle coupled to a quantized Bose field and show that such a system has a ground state for two classes of short-range potentials which are alone too weak to have a zero-energy resonance

    Binding threshold for the Pauli-Fierz operator

    Full text link
    For the Pauli-Fierz operator with a short range potential we study the binding threshold as a function of the fine structure constant α\alpha and show that it converges to the binding threshold for the Schr\"odinger operator in the small α\alpha limit

    Renormalized Electron Mass in Nonrelativistic QED

    Get PDF
    Within the framework of nonrelativistic QED, we prove that, for small values of the coupling constant, the energy function, E_|P|, of a dressed electron is twice differentiable in the momentum P in a neighborhood of P = 0. Furthermore, (E_|P|)" is bounded from below by a constant larger than zero. Our results are proven with the help of iterative analytic perturbation theory

    Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology

    Full text link
    We consider a spatially homogeneous and isotropic system of Dirac particles coupled to classical gravity. The dust and radiation dominated closed Friedmann-Robertson-Walker space-times are recovered as limiting cases. We find a mechanism where quantum oscillations of the Dirac wave functions can prevent the formation of the big bang or big crunch singularity. Thus before the big crunch, the collapse of the universe is stopped by quantum effects and reversed to an expansion, so that the universe opens up entering a new era of classical behavior. Numerical examples of such space-times are given, and the dependence on various parameters is discussed. Generically, one has a collapse after a finite number of cycles. By fine-tuning the parameters we construct an example of a space-time which is time-periodic, thus running through an infinite number of contraction and expansion cycles.Comment: 8 pages, LaTeX, 4 figures, statement on energy conditions correcte

    Self-consistent solution for the polarized vacuum in a no-photon QED model

    Full text link
    We study the Bogoliubov-Dirac-Fock model introduced by Chaix and Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989) which is a mean-field theory deduced from no-photon QED. The associated functional is bounded from below. In the presence of an external field, a minimizer, if it exists, is interpreted as the polarized vacuum and it solves a self-consistent equation. In a recent paper math-ph/0403005, we proved the convergence of the iterative fixed-point scheme naturally associated with this equation to a global minimizer of the BDF functional, under some restrictive conditions on the external potential, the ultraviolet cut-off Λ\Lambda and the bare fine structure constant α\alpha. In the present work, we improve this result by showing the existence of the minimizer by a variational method, for any cut-off Λ\Lambda and without any constraint on the external field. We also study the behaviour of the minimizer as Λ\Lambda goes to infinity and show that the theory is "nullified" in that limit, as predicted first by Landau: the vacuum totally kills the external potential. Therefore the limit case of an infinite cut-off makes no sense both from a physical and mathematical point of view. Finally, we perform a charge and density renormalization scheme applying simultaneously to all orders of the fine structure constant α\alpha, on a simplified model where the exchange term is neglected.Comment: Final version, to appear in J. Phys. A: Math. Ge

    Quantitative estimates on the Hydrogen ground state energy in non-relativistic QED

    Full text link
    In this paper, we determine the exact expression for the hydrogen binding energy in the Pauli-Fierz model up to the order O(α5logα1)O(\alpha^5\log\alpha^{-1}), where α\alpha denotes the finestructure constant, and prove rigorous bounds on the remainder term of the order o(α5logα1)o(\alpha^5\log\alpha^{-1}). As a consequence, we prove that the binding energy is not a real analytic function of α\alpha, and verify the existence of logarithmic corrections to the expansion of the ground state energy in powers of α\alpha, as conjectured in the recent literature.Comment: AMS Latex, 51 page

    Scaling in a Nonconservative Earthquake Model of Self-Organised Criticality

    Full text link
    We numerically investigate the Olami-Feder-Christensen model for earthquakes in order to characterise its scaling behaviour. We show that ordinary finite size scaling in the model is violated due to global, system wide events. Nevertheless we find that subsystems of linear dimension small compared to the overall system size obey finite (subsystem) size scaling, with universal critical coefficients, for the earthquake events localised within the subsystem. We provide evidence, moreover, that large earthquakes responsible for breaking finite size scaling are initiated predominantly near the boundary.Comment: 6 pages, 6 figures, to be published in Phys. Rev. E; references sorted correctl

    A Minimization Method for Relativistic Electrons in a Mean-Field Approximation of Quantum Electrodynamics

    Full text link
    We study a mean-field relativistic model which is able to describe both the behavior of finitely many spin-1/2 particles like electrons and of the Dirac sea which is self-consistently polarized in the presence of the real particles. The model is derived from the QED Hamiltonian in Coulomb gauge neglecting the photon field. All our results are non-perturbative and mathematically rigorous.Comment: 18 pages, 3 figure

    A simple method for finite range decomposition of quadratic forms and Gaussian fields

    Full text link
    We present a simple method to decompose the Green forms corresponding to a large class of interesting symmetric Dirichlet forms into integrals over symmetric positive semi-definite and finite range (properly supported) forms that are smoother than the original Green form. This result gives rise to multiscale decompositions of the associated Gaussian free fields into sums of independent smoother Gaussian fields with spatially localized correlations. Our method makes use of the finite propagation speed of the wave equation and Chebyshev polynomials. It improves several existing results and also gives simpler proofs.Comment: minor correction for t<

    Ground State and Resonances in the Standard Model of Non-relativistic QED

    Full text link
    We prove existence of a ground state and resonances in the standard model of the non-relativistic quantum electro-dynamics (QED). To this end we introduce a new canonical transformation of QED Hamiltonians and use the spectral renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change
    corecore